Source code for opacus.utils.module_utils
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import logging
import sys
from typing import Dict, Iterable, List, Tuple
import torch
import torch.nn as nn
logging.basicConfig(
format="%(asctime)s:%(levelname)s:%(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
stream=sys.stderr,
)
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
def has_trainable_params(module: nn.Module) -> bool:
return any(p.requires_grad for p in module.parameters(recurse=False))
[docs]
def parametrized_modules(module: nn.Module) -> Iterable[Tuple[str, nn.Module]]:
"""
Recursively iterates over all submodules, returning those that
have parameters (as opposed to "wrapper modules" that just organize modules).
"""
yield from (
(m_name, m)
for (m_name, m) in module.named_modules()
if any(p is not None for p in m.parameters(recurse=False))
)
[docs]
def trainable_modules(module: nn.Module) -> Iterable[Tuple[str, nn.Module]]:
"""
Recursively iterates over all submodules, returning those that
have parameters and are trainable (ie they want a grad).
"""
yield from (
(m_name, m)
for (m_name, m) in parametrized_modules(module)
if any(p.requires_grad for p in m.parameters(recurse=False))
)
[docs]
def trainable_parameters(module: nn.Module) -> Iterable[Tuple[str, nn.Parameter]]:
"""
Recursively iterates over all parameters, returning those that
are trainable (ie they want a grad).
"""
yield from (
(p_name, p) for (p_name, p) in module.named_parameters() if p.requires_grad
)
[docs]
def requires_grad(module: nn.Module, *, recurse: bool = False) -> bool:
"""
Checks if any parameters in a specified module require gradients.
Args:
module: PyTorch module whose parameters are to be examined.
recurse: Flag specifying if the gradient requirement check should
be applied recursively to submodules of the specified module
Returns:
Flag indicate if any parameters require gradients
"""
requires_grad = any(p.requires_grad for p in module.parameters(recurse))
return requires_grad
[docs]
def clone_module(module: nn.Module) -> nn.Module:
"""
Handy utility to clone an nn.Module. PyTorch doesn't always support copy.deepcopy(), so it is
just easier to serialize the model to a BytesIO and read it from there.
Args:
module: The module to clone
Returns:
The clone of ``module``
"""
with io.BytesIO() as bytesio:
torch.save(module, bytesio)
bytesio.seek(0)
module_copy = torch.load(bytesio)
next_param = next(
module.parameters(), None
) # Eg, InstanceNorm with affine=False has no params
return module_copy.to(next_param.device) if next_param is not None else module_copy
[docs]
def get_submodule(module: nn.Module, target: str) -> nn.Module:
"""
Returns the submodule given by target if it exists, otherwise throws an error.
This is copy-pasta of Pytorch 1.9's ``get_submodule()`` implementation; and is
included here to also support Pytorch 1.8. This function can be removed in favour
of ``module.get_submodule()`` once Opacus abandons support for torch 1.8.
See more details at https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=get_submodule#torch.nn.Module.get_submodule
Args:
module: module
target: submodule string
Returns:
The submodule given by target if it exists
Raises:
AttributeError
If submodule doesn't exist
"""
if target == "":
return module
atoms: List[str] = target.split(".")
mod: nn.Module = module
for item in atoms:
if not hasattr(mod, item):
raise AttributeError(
mod._get_name() + " has no " "attribute `" + item + "`"
)
mod = getattr(mod, item)
if not isinstance(mod, torch.nn.Module):
raise AttributeError("`" + item + "` is not " "an nn.Module")
return mod
[docs]
def are_state_dict_equal(sd1: Dict, sd2: Dict):
"""
Compares two state dicts, while logging discrepancies
"""
if len(sd1) != len(sd2):
return False
for k1, v1 in sd1.items():
# check that all keys are accounted for.
if k1 not in sd2:
return False
# check that value tensors are equal.
v2 = sd2[k1]
if not torch.allclose(v1, v2):
return False
return True