Source code for opacus.optimizers.perlayeroptimizer

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from typing import List, Optional

import torch
from opacus.optimizers.utils import params
from torch.optim import Optimizer

from .optimizer import DPOptimizer, _check_processed_flag, _mark_as_processed


[docs] class DPPerLayerOptimizer(DPOptimizer): """ :class:`~opacus.optimizers.optimizer.DPOptimizer` that implements per layer clipping strategy """ def __init__( self, optimizer: Optimizer, *, noise_multiplier: float, max_grad_norm: List[float], expected_batch_size: Optional[int], loss_reduction: str = "mean", generator=None, secure_mode: bool = False, **kwargs, ): assert len(max_grad_norm) == len(params(optimizer)) self.max_grad_norms = max_grad_norm max_grad_norm = torch.norm(torch.Tensor(self.max_grad_norms), p=2).item() super().__init__( optimizer, noise_multiplier=noise_multiplier, max_grad_norm=max_grad_norm, expected_batch_size=expected_batch_size, loss_reduction=loss_reduction, generator=generator, secure_mode=secure_mode, **kwargs, )
[docs] def clip_and_accumulate(self): for p, max_grad_norm in zip(self.params, self.max_grad_norms): _check_processed_flag(p.grad_sample) grad_sample = self._get_flat_grad_sample(p) per_sample_norms = grad_sample.norm( 2, dim=tuple(range(1, grad_sample.ndim)) ) per_sample_clip_factor = (max_grad_norm / (per_sample_norms + 1e-6)).clamp( max=1.0 ) grad = torch.einsum("i,i...", per_sample_clip_factor, grad_sample) if p.summed_grad is not None: p.summed_grad += grad else: p.summed_grad = grad _mark_as_processed(p.grad_sample)