Source code for opacus.optimizers.perlayeroptimizer
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import List, Optional
import torch
from opacus.optimizers.utils import params
from torch.optim import Optimizer
from .optimizer import DPOptimizer, _check_processed_flag, _mark_as_processed
[docs]
class DPPerLayerOptimizer(DPOptimizer):
"""
:class:`~opacus.optimizers.optimizer.DPOptimizer` that implements
per layer clipping strategy
"""
def __init__(
self,
optimizer: Optimizer,
*,
noise_multiplier: float,
max_grad_norm: List[float],
expected_batch_size: Optional[int],
loss_reduction: str = "mean",
generator=None,
secure_mode: bool = False,
):
assert len(max_grad_norm) == len(params(optimizer))
self.max_grad_norms = max_grad_norm
max_grad_norm = torch.norm(torch.Tensor(self.max_grad_norms), p=2).item()
super().__init__(
optimizer,
noise_multiplier=noise_multiplier,
max_grad_norm=max_grad_norm,
expected_batch_size=expected_batch_size,
loss_reduction=loss_reduction,
generator=generator,
secure_mode=secure_mode,
)
[docs]
def clip_and_accumulate(self):
for p, max_grad_norm in zip(self.params, self.max_grad_norms):
_check_processed_flag(p.grad_sample)
grad_sample = self._get_flat_grad_sample(p)
per_sample_norms = grad_sample.norm(
2, dim=tuple(range(1, grad_sample.ndim))
)
per_sample_clip_factor = (max_grad_norm / (per_sample_norms + 1e-6)).clamp(
max=1.0
)
grad = torch.einsum("i,i...", per_sample_clip_factor, grad_sample)
if p.summed_grad is not None:
p.summed_grad += grad
else:
p.summed_grad = grad
_mark_as_processed(p.grad_sample)